Add: Dynamic graph scaling for multi vCPU
All checks were successful
Docker Build and Push (Multi-architecture) / build-and-push (push) Successful in 33s

This commit is contained in:
2025-09-29 04:07:33 +00:00
parent ce4887bae3
commit ce77639a47
2 changed files with 1820 additions and 638 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -14,6 +14,7 @@ from datetime import datetime, timedelta
from typing import Dict, Tuple, Optional
import io
import logging
import math
# Get the logger from the main bot module
logger = logging.getLogger('pterodisbot')
@@ -27,6 +28,7 @@ class ServerMetricsGraphs:
- Generates PNG images of line graphs for Discord embedding
- Automatic data rotation (FIFO queue with max 6 points)
- Separate tracking for CPU percentage and memory MB usage
- Dynamic CPU scaling in 100% increments for multi-vCPU servers
- Clean graph styling optimized for Discord dark theme
"""
@@ -70,6 +72,23 @@ class ServerMetricsGraphs:
logger.debug(f"Added metrics data point for {self.server_name}: CPU={cpu_percent}%, Memory={memory_mb}MB")
def _calculate_cpu_scale_limit(self, max_cpu_value: float) -> int:
"""
Calculate appropriate CPU scale limit in 100% increments.
Args:
max_cpu_value: Maximum CPU value in the dataset
Returns:
Scale limit rounded up to nearest 100% increment
"""
if max_cpu_value <= 100:
return 100
# Round up to nearest 100% increment
# e.g., 150% -> 200%, 250% -> 300%, 350% -> 400%
return math.ceil(max_cpu_value / 100) * 100
def generate_cpu_graph(self) -> Optional[io.BytesIO]:
"""
Generate a CPU usage line graph as a PNG image.
@@ -86,6 +105,10 @@ class ServerMetricsGraphs:
timestamps = [point[0] for point in self.data_points]
cpu_values = [point[1] for point in self.data_points]
# Calculate dynamic CPU scale limit
max_cpu = max(cpu_values)
cpu_scale_limit = self._calculate_cpu_scale_limit(max_cpu)
# Create figure with dark theme styling
plt.style.use('dark_background')
fig, ax = plt.subplots(figsize=(8, 4), dpi=100)
@@ -96,9 +119,13 @@ class ServerMetricsGraphs:
line = ax.plot(timestamps, cpu_values, color='#7289da', linewidth=2.5, marker='o', markersize=4)
ax.fill_between(timestamps, cpu_values, alpha=0.3, color='#7289da')
# Customize axes
# Customize axes with dynamic scaling
ax.set_ylabel('CPU Usage (%)', color='#ffffff', fontsize=10)
ax.set_ylim(0, max(100, max(cpu_values) * 1.1)) # Dynamic scaling with 100% minimum
ax.set_ylim(0, cpu_scale_limit)
# Add horizontal grid lines at 100% increments for better readability
for i in range(100, cpu_scale_limit + 1, 100):
ax.axhline(y=i, color='#ffffff', alpha=0.2, linestyle='--', linewidth=0.8)
# Format time axis
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
@@ -113,8 +140,12 @@ class ServerMetricsGraphs:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Add title
ax.set_title(f'{self.server_name} - CPU Usage', color='#ffffff', fontsize=12, pad=20)
# Add title with scale info for multi-vCPU servers
title = f'{self.server_name} - CPU Usage'
if cpu_scale_limit > 100:
estimated_vcpus = cpu_scale_limit // 100
title += f' (~{estimated_vcpus} vCPU cores)'
ax.set_title(title, color='#ffffff', fontsize=12, pad=20)
# Tight layout to prevent label cutoff
plt.tight_layout()
@@ -128,7 +159,7 @@ class ServerMetricsGraphs:
# Clean up matplotlib resources
plt.close(fig)
logger.debug(f"Generated CPU graph for {self.server_name}")
logger.debug(f"Generated CPU graph for {self.server_name} (scale: 0-{cpu_scale_limit}%)")
return img_buffer
except Exception as e:
@@ -219,6 +250,10 @@ class ServerMetricsGraphs:
cpu_values = [point[1] for point in self.data_points]
memory_values = [point[2] for point in self.data_points]
# Calculate dynamic CPU scale limit
max_cpu = max(cpu_values)
cpu_scale_limit = self._calculate_cpu_scale_limit(max_cpu)
# Create figure with two subplots
plt.style.use('dark_background')
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6), dpi=100, sharex=True)
@@ -229,10 +264,20 @@ class ServerMetricsGraphs:
ax1.plot(timestamps, cpu_values, color='#7289da', linewidth=2.5, marker='o', markersize=4)
ax1.fill_between(timestamps, cpu_values, alpha=0.3, color='#7289da')
ax1.set_ylabel('CPU Usage (%)', color='#ffffff', fontsize=10)
ax1.set_ylim(0, max(100, max(cpu_values) * 1.1))
ax1.set_ylim(0, cpu_scale_limit)
ax1.tick_params(colors='#ffffff', labelsize=8)
ax1.grid(True, alpha=0.3, color='#ffffff')
ax1.set_title(f'{self.server_name} - Resource Usage', color='#ffffff', fontsize=12)
# Add horizontal grid lines at 100% increments for CPU subplot
for i in range(100, cpu_scale_limit + 1, 100):
ax1.axhline(y=i, color='#ffffff', alpha=0.2, linestyle='--', linewidth=0.8)
# Title with vCPU info if applicable
title = f'{self.server_name} - Resource Usage'
if cpu_scale_limit > 100:
estimated_vcpus = cpu_scale_limit // 100
title += f' (~{estimated_vcpus} vCPU cores)'
ax1.set_title(title, color='#ffffff', fontsize=12)
# Memory subplot
ax2.set_facecolor('#36393f')
@@ -265,7 +310,7 @@ class ServerMetricsGraphs:
plt.close(fig)
logger.debug(f"Generated combined graph for {self.server_name}")
logger.debug(f"Generated combined graph for {self.server_name} (CPU scale: 0-{cpu_scale_limit}%)")
return img_buffer
except Exception as e:
@@ -293,6 +338,11 @@ class ServerMetricsGraphs:
latest_cpu = latest_point[1]
latest_memory = latest_point[2]
# Calculate CPU scale info
max_cpu = max(point[1] for point in self.data_points)
cpu_scale_limit = self._calculate_cpu_scale_limit(max_cpu)
estimated_vcpus = cpu_scale_limit // 100
# Calculate trends if we have multiple points
cpu_trend = 'stable'
memory_trend = 'stable'
@@ -316,6 +366,8 @@ class ServerMetricsGraphs:
'latest_memory': latest_memory,
'cpu_trend': cpu_trend,
'memory_trend': memory_trend,
'cpu_scale_limit': cpu_scale_limit,
'estimated_vcpus': estimated_vcpus,
'time_span_minutes': len(self.data_points) * 10 / 60 # Convert to minutes
}
@@ -417,4 +469,4 @@ class ServerMetricsManager:
'total_servers': len(self.server_graphs),
'servers_with_data': sum(1 for graphs in self.server_graphs.values() if graphs.has_sufficient_data),
'total_data_points': sum(len(graphs.data_points) for graphs in self.server_graphs.values())
}
}