Compare commits
14 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 102814420b | |||
| 55971496c8 | |||
| 135d596119 | |||
| 205c8eb9b7 | |||
| f5528dcc9c | |||
| ce77639a47 | |||
| ce4887bae3 | |||
| ca9e88f1e2 | |||
| 4b400fea1f | |||
| 4260948c1c | |||
| cbb951d121 | |||
| a546540c45 | |||
| 174c27c933 | |||
| 1f7f211e36 |
18
dockerfile
18
dockerfile
@@ -18,13 +18,13 @@ COPY requirements.txt .
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Final stage - using smaller base image
|
||||
FROM python:3.11-alpine3.18
|
||||
# Final stage - using slim
|
||||
FROM python:3.11-slim
|
||||
|
||||
# Install minimal runtime dependencies
|
||||
RUN apk add --no-cache \
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
tini \
|
||||
&& rm -rf /var/cache/apk/*
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
@@ -34,18 +34,22 @@ COPY --from=builder /opt/venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
# Create a non-root user
|
||||
RUN addgroup -S bot && adduser -S bot -G bot
|
||||
RUN groupadd -r bot && useradd -r -g bot bot
|
||||
|
||||
# Copy necessary files
|
||||
COPY --chown=bot:bot *.py ./
|
||||
COPY --chown=bot:bot entrypoint.sh ./
|
||||
# Add other necessary directories/files as needed
|
||||
|
||||
# Create directories for persistent storage
|
||||
RUN mkdir -p logs embed && \
|
||||
chown -R bot:bot /app logs embed && \
|
||||
chmod -R 777 /app logs embed
|
||||
|
||||
# Create and set permissions for matplotlib config directory
|
||||
RUN mkdir -p /tmp/matplotlib && \
|
||||
chown -R bot:bot /tmp/matplotlib && \
|
||||
chmod -R 777 /tmp/matplotlib
|
||||
|
||||
# Switch to non root user
|
||||
USER bot
|
||||
|
||||
@@ -54,6 +58,8 @@ ENV PYTHONUNBUFFERED=1
|
||||
ENV CONFIG_PATH=/app/config.ini
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ENV PYTHONPYCACHEPREFIX=/tmp
|
||||
ENV MPLCONFIGDIR=/tmp/matplotlib
|
||||
ENV MPLBACKEND=Agg
|
||||
|
||||
# Run the bot using tini and entrypoint script
|
||||
ENTRYPOINT ["tini", "--", "/bin/sh", "entrypoint.sh"]
|
||||
File diff suppressed because it is too large
Load Diff
165
pterodisbot.py
165
pterodisbot.py
@@ -30,7 +30,13 @@ import configparser
|
||||
from datetime import datetime
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from pathlib import Path
|
||||
import generate_config
|
||||
import matplotlib
|
||||
matplotlib.use('Agg') # Use non-interactive backend for server environments
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
from collections import deque
|
||||
import io
|
||||
from server_metrics_graphs import ServerMetricsGraphs, ServerMetricsManager
|
||||
|
||||
# ==============================================
|
||||
# LOGGING SETUP
|
||||
@@ -549,10 +555,11 @@ class PterodactylBot(commands.Bot):
|
||||
self.server_cache: Dict[str, dict] = {} # Cache of server data from Pterodactyl
|
||||
self.embed_locations: Dict[str, Dict[str, int]] = {} # Tracks where embeds are posted
|
||||
self.update_lock = asyncio.Lock() # Prevents concurrent updates
|
||||
self.embed_storage_path = Path(EMBED_LOCATIONS_FILE) # File to store embed locations
|
||||
self.embed_storage_path = Path(EMBED_LOCATIONS_FILE) # File to store embed
|
||||
self.metrics_manager = ServerMetricsManager() # Data manager for metrics graphing system
|
||||
# Track previous server states and CPU usage to detect changes
|
||||
# Format: {server_id: (state, cpu_usage)}
|
||||
self.previous_states: Dict[str, Tuple[str, float]] = {}
|
||||
# Format: {server_id: (state, cpu_usage, last_force_update)}
|
||||
self.previous_states: Dict[str, Tuple[str, float, Optional[float]]] = {}
|
||||
logger.info("Initialized PterodactylBot instance with state tracking")
|
||||
|
||||
async def setup_hook(self):
|
||||
@@ -750,25 +757,104 @@ class PterodactylBot(commands.Bot):
|
||||
timestamp=datetime.now()
|
||||
)
|
||||
|
||||
embed.add_field(name="Server ID", value=identifier, inline=True)
|
||||
embed.add_field(name="🆔 Server ID", value=f"`{identifier}`", inline=True)
|
||||
|
||||
if is_suspended:
|
||||
embed.add_field(name="Status", value="⛔ Suspended", inline=True)
|
||||
embed.add_field(name="ℹ️ Status", value="⛔ `Suspended`", inline=True)
|
||||
else:
|
||||
embed.add_field(name="Status", value="✅ Active", inline=True)
|
||||
embed.add_field(name="ℹ️ Status", value="✅ `Active`", inline=True)
|
||||
|
||||
# Add resource usage if server is running
|
||||
if current_state.lower() == "running":
|
||||
if current_state.lower() != "offline":
|
||||
# Current usage
|
||||
cpu_usage = round(resource_attributes.get('resources', {}).get('cpu_absolute', 0), 2)
|
||||
memory_usage = round(resource_attributes.get('resources', {}).get('memory_bytes', 0) / (1024 ** 2), 2)
|
||||
disk_usage = round(resource_attributes.get('resources', {}).get('disk_bytes', 0) / (1024 ** 2), 2)
|
||||
network_rx = round(resource_attributes.get('resources', {}).get('network_rx_bytes', 0) / (1024 ** 2), 2)
|
||||
network_tx = round(resource_attributes.get('resources', {}).get('network_tx_bytes', 0) / (1024 ** 2), 2)
|
||||
|
||||
embed.add_field(name="CPU Usage", value=f"{cpu_usage}%", inline=True)
|
||||
embed.add_field(name="Memory Usage", value=f"{memory_usage} MB", inline=True)
|
||||
embed.add_field(name="Disk Usage", value=f"{disk_usage} MB", inline=True)
|
||||
embed.add_field(name="Network", value=f"⬇️ {network_rx} MB / ⬆️ {network_tx} MB", inline=False)
|
||||
# Maximum allocated resources from server data
|
||||
limits = attributes.get('limits', {})
|
||||
cpu_limit = limits.get('cpu', 0)
|
||||
memory_limit = limits.get('memory', 0)
|
||||
disk_limit = limits.get('disk', 0)
|
||||
|
||||
# Format limit values - display ∞ for unlimited (0 limit)
|
||||
def format_limit(value, unit=""):
|
||||
if value == 0:
|
||||
return f"{'∞':<8}{unit}" # Lemniscate symbol for infinity
|
||||
else:
|
||||
return f"{value:<8}{unit}"
|
||||
|
||||
# Get uptime from Pterodactyl API (in milliseconds)
|
||||
uptime_ms = resource_attributes.get('resources', {}).get('uptime', 0)
|
||||
|
||||
# Format uptime for display
|
||||
if uptime_ms > 0:
|
||||
uptime_seconds = uptime_ms // 1000 # Convert ms to seconds
|
||||
if uptime_seconds < 60:
|
||||
uptime_text = f"`{uptime_seconds}s`"
|
||||
elif uptime_seconds < 3600:
|
||||
uptime_text = f"`{uptime_seconds // 60}m {uptime_seconds % 60}s`"
|
||||
elif uptime_seconds < 86400:
|
||||
hours = uptime_seconds // 3600
|
||||
minutes = (uptime_seconds % 3600) // 60
|
||||
uptime_text = f"`{hours}h {minutes}m`"
|
||||
else:
|
||||
days = uptime_seconds // 86400
|
||||
hours = (uptime_seconds % 86400) // 3600
|
||||
uptime_text = f"`{days}d {hours}h`"
|
||||
else:
|
||||
uptime_text = "`Just started`"
|
||||
|
||||
embed.add_field(name="⏱️ Uptime", value=uptime_text, inline=True)
|
||||
|
||||
# Create dedicated usage text box with current usage and limits in monospace font
|
||||
usage_text = (
|
||||
f"```properties\n"
|
||||
f"CPU: {cpu_usage:>8} / {format_limit(cpu_limit, ' %')}\n"
|
||||
f"Memory: {memory_usage:>8} / {format_limit(memory_limit, ' MiB')}\n"
|
||||
f"Disk: {disk_usage:>8} / {format_limit(disk_limit, ' MiB')}\n"
|
||||
f"```"
|
||||
)
|
||||
|
||||
embed.add_field(
|
||||
name="📊 Resource Usage",
|
||||
value=usage_text,
|
||||
inline=False
|
||||
)
|
||||
|
||||
embed.add_field(
|
||||
name="Network In",
|
||||
value=f"📥 `{network_rx} MiB`",
|
||||
inline=True
|
||||
)
|
||||
|
||||
embed.add_field(
|
||||
name="Network Out",
|
||||
value=f"📤 `{network_tx} MiB`",
|
||||
inline=True
|
||||
)
|
||||
|
||||
# Add graph images if available
|
||||
server_graphs = self.metrics_manager.get_server_graphs(identifier)
|
||||
if server_graphs and server_graphs.has_sufficient_data:
|
||||
summary = server_graphs.get_data_summary()
|
||||
|
||||
graph_description = (
|
||||
f">>> `Data points: {summary['point_count']}/6`\n"
|
||||
f"`CPU trend: {summary['cpu_trend']} • Memory trend: {summary['memory_trend']}`"
|
||||
)
|
||||
|
||||
# Add a field explaining the graphs
|
||||
embed.add_field(
|
||||
name="📈 Usage Trends (Last Minute)",
|
||||
value=graph_description,
|
||||
inline=False
|
||||
)
|
||||
|
||||
# Set graph images (these will be attached as files in the update_status method)
|
||||
embed.set_image(url=f"attachment://metrics_graph_{identifier}.png")
|
||||
|
||||
embed.set_footer(text="Last updated")
|
||||
|
||||
@@ -790,6 +876,7 @@ class PterodactylBot(commands.Bot):
|
||||
1. Server power state changes (started/stopped/restarted)
|
||||
2. Significant CPU usage change (>50% difference)
|
||||
3. First time seeing the server
|
||||
4. Server has been running for 10 minutes (force update for uptime)
|
||||
|
||||
This minimizes API calls to Discord and updates while maintaining
|
||||
real-time awareness of important server changes.
|
||||
@@ -807,11 +894,16 @@ class PterodactylBot(commands.Bot):
|
||||
self.server_cache = {server['attributes']['identifier']: server for server in servers}
|
||||
logger.debug(f"Updated server cache with {len(servers)} servers")
|
||||
|
||||
# Clean up metrics for servers that no longer exist
|
||||
active_server_ids = list(self.server_cache.keys())
|
||||
self.metrics_manager.cleanup_old_servers(active_server_ids)
|
||||
|
||||
# Variables to track our update statistics
|
||||
update_count = 0 # Successful updates
|
||||
error_count = 0 # Failed updates
|
||||
missing_count = 0 # Missing embeds
|
||||
skipped_count = 0 # Servers that didn't need updates
|
||||
current_time = datetime.now().timestamp()
|
||||
|
||||
# Process each server we're tracking embeds for
|
||||
for server_id, location in list(self.embed_locations.items()):
|
||||
@@ -831,8 +923,14 @@ class PterodactylBot(commands.Bot):
|
||||
current_state = resources.get('attributes', {}).get('current_state', 'offline')
|
||||
cpu_usage = round(resources.get('attributes', {}).get('resources', {}).get('cpu_absolute', 0), 2)
|
||||
|
||||
# Retrieve previous recorded state and CPU usage
|
||||
prev_state, prev_cpu = self.previous_states.get(server_id, (None, 0))
|
||||
# Collect metrics data for running servers
|
||||
if current_state == 'running':
|
||||
memory_usage = round(resources.get('attributes', {}).get('resources', {}).get('memory_bytes', 0) / (1024 ** 2), 2)
|
||||
self.metrics_manager.add_server_data(server_id, server_name, cpu_usage, memory_usage)
|
||||
logger.debug(f"Added metrics data for {server_name}: CPU={cpu_usage}%, Memory={memory_usage}MB")
|
||||
|
||||
# Retrieve previous recorded state, CPU usage, and last force update time
|
||||
prev_state, prev_cpu, last_force_update = self.previous_states.get(server_id, (None, 0, None))
|
||||
|
||||
# DECISION LOGIC: Should we update the embed?
|
||||
needs_update = False
|
||||
@@ -852,6 +950,15 @@ class PterodactylBot(commands.Bot):
|
||||
logger.debug(f"First check for {server_name}, performing initial update")
|
||||
needs_update = True
|
||||
|
||||
# 4. Force update every 10 minutes for running servers (for uptime counter)
|
||||
elif (current_state == 'running' and
|
||||
(last_force_update is None or
|
||||
current_time - last_force_update >= 600)): # 10 minutes = 600 seconds
|
||||
logger.debug(f"Executing 10-minute force update for running server {server_name}")
|
||||
needs_update = True
|
||||
# Update the last force update time
|
||||
last_force_update = current_time
|
||||
|
||||
# PERFORM UPDATE IF NEEDED
|
||||
if needs_update:
|
||||
# Generate fresh embed and view components
|
||||
@@ -865,14 +972,38 @@ class PterodactylBot(commands.Bot):
|
||||
|
||||
# Fetch and update the existing message
|
||||
message = await channel.fetch_message(int(location['message_id']))
|
||||
await message.edit(embed=embed, view=view)
|
||||
|
||||
# Check if server is transitioning to offline/stopping state
|
||||
# and remove image attachment if present
|
||||
files = []
|
||||
server_graphs = self.metrics_manager.get_server_graphs(server_id)
|
||||
|
||||
# Only include graph images if server is running AND has sufficient data
|
||||
if (current_state == 'running' and
|
||||
server_graphs and
|
||||
server_graphs.has_sufficient_data):
|
||||
# Generate metrics graph
|
||||
combined_graph = server_graphs.generate_combined_graph()
|
||||
if combined_graph:
|
||||
files.append(discord.File(combined_graph, filename=f"metrics_graph_{server_id}.png"))
|
||||
logger.debug(f"Including metrics graph for running server {server_name}")
|
||||
else:
|
||||
# Server is offline/stopping - ensure no image is attached
|
||||
logger.debug(f"Server {server_name} is {current_state}, removing image attachment if present")
|
||||
# We'll update without files to remove any existing attachments
|
||||
|
||||
# Update message with embed, view, and files (empty files list removes attachments)
|
||||
await message.edit(embed=embed, view=view, attachments=files)
|
||||
update_count += 1
|
||||
logger.debug(f"Updated status for {server_name}")
|
||||
|
||||
# Update our state tracking with new values
|
||||
self.previous_states[server_id] = (current_state, cpu_usage)
|
||||
# Only update last_force_update if this was a force update
|
||||
new_last_force_update = last_force_update if needs_update and current_state == 'running' and current_time - (last_force_update or 0) >= 600 else (last_force_update if last_force_update is not None else None)
|
||||
self.previous_states[server_id] = (current_state, cpu_usage, new_last_force_update)
|
||||
else:
|
||||
# No significant changes detected
|
||||
# No significant changes detected, but update tracking with current state
|
||||
self.previous_states[server_id] = (current_state, cpu_usage, last_force_update)
|
||||
skipped_count += 1
|
||||
logger.debug(f"No changes detected for {server_name}, skipping update")
|
||||
|
||||
|
||||
@@ -2,3 +2,4 @@ discord.py>=2.3.0
|
||||
aiohttp>=3.8.0
|
||||
configparser>=5.3.0
|
||||
python-dotenv
|
||||
matplotlib
|
||||
472
server_metrics_graphs.py
Normal file
472
server_metrics_graphs.py
Normal file
@@ -0,0 +1,472 @@
|
||||
"""
|
||||
Server Metrics Graphs Module for Pterodactyl Discord Bot
|
||||
|
||||
This module provides graphing capabilities for server CPU and memory usage.
|
||||
Generates line graphs as PNG images for embedding in Discord messages.
|
||||
"""
|
||||
|
||||
import matplotlib
|
||||
matplotlib.use('Agg') # Use non-interactive backend for server environments
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
from collections import deque
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Dict, Tuple, Optional
|
||||
import io
|
||||
import logging
|
||||
import math
|
||||
|
||||
# Get the logger from the main bot module
|
||||
logger = logging.getLogger('pterodisbot')
|
||||
|
||||
class ServerMetricsGraphs:
|
||||
"""
|
||||
Manages CPU and memory usage graphs for individual servers.
|
||||
|
||||
Features:
|
||||
- Stores last 6 data points (1 minute of history at 10-second intervals)
|
||||
- Generates PNG images of line graphs for Discord embedding
|
||||
- Automatic data rotation (FIFO queue with max 6 points)
|
||||
- Separate tracking for CPU percentage and memory MB usage
|
||||
- Dynamic CPU scaling in 100% increments for multi-vCPU servers
|
||||
- Clean graph styling optimized for Discord dark theme
|
||||
"""
|
||||
|
||||
def __init__(self, server_id: str, server_name: str):
|
||||
"""
|
||||
Initialize metrics tracking for a server.
|
||||
|
||||
Args:
|
||||
server_id: Pterodactyl server identifier
|
||||
server_name: Human-readable server name
|
||||
"""
|
||||
self.server_id = server_id
|
||||
self.server_name = server_name
|
||||
|
||||
# Use deque with maxlen=6 for automatic FIFO rotation
|
||||
# Each entry is a tuple: (timestamp, cpu_percent, memory_mb)
|
||||
self.data_points = deque(maxlen=6)
|
||||
|
||||
# Track if we have enough data for meaningful graphs (at least 2 points)
|
||||
self.has_sufficient_data = False
|
||||
|
||||
logger.debug(f"Initialized metrics tracking for server {server_name} ({server_id})")
|
||||
|
||||
def add_data_point(self, cpu_percent: float, memory_mb: float, timestamp: Optional[datetime] = None):
|
||||
"""
|
||||
Add a new data point to the metrics history.
|
||||
|
||||
Args:
|
||||
cpu_percent: Current CPU usage percentage
|
||||
memory_mb: Current memory usage in megabytes
|
||||
timestamp: Optional timestamp, defaults to current time
|
||||
"""
|
||||
if timestamp is None:
|
||||
timestamp = datetime.now()
|
||||
|
||||
# Add new data point (automatically rotates old data due to maxlen=6)
|
||||
self.data_points.append((timestamp, cpu_percent, memory_mb))
|
||||
|
||||
# Update sufficient data flag
|
||||
self.has_sufficient_data = len(self.data_points) >= 2
|
||||
|
||||
logger.debug(f"Added metrics data point for {self.server_name}: CPU={cpu_percent}%, Memory={memory_mb}MB")
|
||||
|
||||
def _calculate_cpu_scale_limit(self, max_cpu_value: float) -> int:
|
||||
"""
|
||||
Calculate appropriate CPU scale limit in 100% increments.
|
||||
|
||||
Args:
|
||||
max_cpu_value: Maximum CPU value in the dataset
|
||||
|
||||
Returns:
|
||||
Scale limit rounded up to nearest 100% increment
|
||||
"""
|
||||
if max_cpu_value <= 100:
|
||||
return 100
|
||||
|
||||
# Round up to nearest 100% increment
|
||||
# e.g., 150% -> 200%, 250% -> 300%, 350% -> 400%
|
||||
return math.ceil(max_cpu_value / 100) * 100
|
||||
|
||||
def generate_cpu_graph(self) -> Optional[io.BytesIO]:
|
||||
"""
|
||||
Generate a CPU usage line graph as a PNG image.
|
||||
|
||||
Returns:
|
||||
BytesIO object containing PNG image data, or None if insufficient data
|
||||
"""
|
||||
if not self.has_sufficient_data:
|
||||
logger.debug(f"Insufficient data for CPU graph generation: {self.server_name}")
|
||||
return None
|
||||
|
||||
try:
|
||||
# Extract timestamps and CPU data
|
||||
timestamps = [point[0] for point in self.data_points]
|
||||
cpu_values = [point[1] for point in self.data_points]
|
||||
|
||||
# Calculate dynamic CPU scale limit
|
||||
max_cpu = max(cpu_values)
|
||||
cpu_scale_limit = self._calculate_cpu_scale_limit(max_cpu)
|
||||
|
||||
# Create figure with dark theme styling
|
||||
plt.style.use('dark_background')
|
||||
fig, ax = plt.subplots(figsize=(8, 4), dpi=100)
|
||||
fig.patch.set_facecolor('#2f3136') # Discord dark theme background
|
||||
ax.set_facecolor('#36393f') # Slightly lighter for graph area
|
||||
|
||||
# Plot CPU line with gradient fill
|
||||
line = ax.plot(timestamps, cpu_values, color='#7289da', linewidth=2.5, marker='o', markersize=4)
|
||||
ax.fill_between(timestamps, cpu_values, alpha=0.3, color='#7289da')
|
||||
|
||||
# Customize axes with dynamic scaling
|
||||
ax.set_ylabel('CPU Usage (%)', color='#ffffff', fontsize=10)
|
||||
ax.set_ylim(0, cpu_scale_limit)
|
||||
|
||||
# Add horizontal grid lines at 100% increments for better readability
|
||||
for i in range(100, cpu_scale_limit + 1, 100):
|
||||
ax.axhline(y=i, color='#ffffff', alpha=0.2, linestyle='--', linewidth=0.8)
|
||||
|
||||
# Format time axis
|
||||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
||||
ax.xaxis.set_major_locator(mdates.SecondLocator(interval=20))
|
||||
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45, ha='right', color='#ffffff', fontsize=8)
|
||||
|
||||
# Style the graph
|
||||
ax.tick_params(colors='#ffffff', labelsize=8)
|
||||
ax.grid(True, alpha=0.3, color='#ffffff')
|
||||
ax.spines['bottom'].set_color('#ffffff')
|
||||
ax.spines['left'].set_color('#ffffff')
|
||||
ax.spines['top'].set_visible(False)
|
||||
ax.spines['right'].set_visible(False)
|
||||
|
||||
# Add title with scale info for multi-vCPU servers
|
||||
title = f'{self.server_name} - CPU Usage'
|
||||
if cpu_scale_limit > 100:
|
||||
estimated_vcpus = cpu_scale_limit // 100
|
||||
title += f' (~{estimated_vcpus} vCPU cores)'
|
||||
ax.set_title(title, color='#ffffff', fontsize=12, pad=20)
|
||||
|
||||
# Tight layout to prevent label cutoff
|
||||
plt.tight_layout()
|
||||
|
||||
# Save to BytesIO
|
||||
img_buffer = io.BytesIO()
|
||||
plt.savefig(img_buffer, format='png', facecolor='#2f3136', edgecolor='none',
|
||||
bbox_inches='tight', dpi=100)
|
||||
img_buffer.seek(0)
|
||||
|
||||
# Clean up matplotlib resources
|
||||
plt.close(fig)
|
||||
|
||||
logger.debug(f"Generated CPU graph for {self.server_name} (scale: 0-{cpu_scale_limit}%)")
|
||||
return img_buffer
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate CPU graph for {self.server_name}: {str(e)}")
|
||||
plt.close('all') # Clean up any remaining figures
|
||||
return None
|
||||
|
||||
def generate_memory_graph(self) -> Optional[io.BytesIO]:
|
||||
"""
|
||||
Generate a memory usage line graph as a PNG image.
|
||||
|
||||
Returns:
|
||||
BytesIO object containing PNG image data, or None if insufficient data
|
||||
"""
|
||||
if not self.has_sufficient_data:
|
||||
logger.debug(f"Insufficient data for memory graph generation: {self.server_name}")
|
||||
return None
|
||||
|
||||
try:
|
||||
# Extract timestamps and memory data
|
||||
timestamps = [point[0] for point in self.data_points]
|
||||
memory_values = [point[2] for point in self.data_points]
|
||||
|
||||
# Create figure with dark theme styling
|
||||
plt.style.use('dark_background')
|
||||
fig, ax = plt.subplots(figsize=(8, 4), dpi=100)
|
||||
fig.patch.set_facecolor('#2f3136') # Discord dark theme background
|
||||
ax.set_facecolor('#36393f') # Slightly lighter for graph area
|
||||
|
||||
# Plot memory line with gradient fill
|
||||
line = ax.plot(timestamps, memory_values, color='#43b581', linewidth=2.5, marker='o', markersize=4)
|
||||
ax.fill_between(timestamps, memory_values, alpha=0.3, color='#43b581')
|
||||
|
||||
# Customize axes
|
||||
ax.set_ylabel('Memory Usage (MB)', color='#ffffff', fontsize=10)
|
||||
ax.set_ylim(0, max(memory_values) * 1.1) # Dynamic scaling with 10% padding
|
||||
|
||||
# Format time axis
|
||||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
||||
ax.xaxis.set_major_locator(mdates.SecondLocator(interval=20))
|
||||
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45, ha='right', color='#ffffff', fontsize=8)
|
||||
|
||||
# Style the graph
|
||||
ax.tick_params(colors='#ffffff', labelsize=8)
|
||||
ax.grid(True, alpha=0.3, color='#ffffff')
|
||||
ax.spines['bottom'].set_color('#ffffff')
|
||||
ax.spines['left'].set_color('#ffffff')
|
||||
ax.spines['top'].set_visible(False)
|
||||
ax.spines['right'].set_visible(False)
|
||||
|
||||
# Add title
|
||||
ax.set_title(f'{self.server_name} - Memory Usage', color='#ffffff', fontsize=12, pad=20)
|
||||
|
||||
# Tight layout to prevent label cutoff
|
||||
plt.tight_layout()
|
||||
|
||||
# Save to BytesIO
|
||||
img_buffer = io.BytesIO()
|
||||
plt.savefig(img_buffer, format='png', facecolor='#2f3136', edgecolor='none',
|
||||
bbox_inches='tight', dpi=100)
|
||||
img_buffer.seek(0)
|
||||
|
||||
# Clean up matplotlib resources
|
||||
plt.close(fig)
|
||||
|
||||
logger.debug(f"Generated memory graph for {self.server_name}")
|
||||
return img_buffer
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate memory graph for {self.server_name}: {str(e)}")
|
||||
plt.close('all') # Clean up any remaining figures
|
||||
return None
|
||||
|
||||
def generate_combined_graph(self) -> Optional[io.BytesIO]:
|
||||
"""
|
||||
Generate a combined CPU and memory usage graph as a PNG image.
|
||||
|
||||
Returns:
|
||||
BytesIO object containing PNG image data, or None if insufficient data
|
||||
"""
|
||||
if not self.has_sufficient_data:
|
||||
logger.debug(f"Insufficient data for combined graph generation: {self.server_name}")
|
||||
return None
|
||||
|
||||
try:
|
||||
# Extract data
|
||||
timestamps = [point[0] for point in self.data_points]
|
||||
cpu_values = [point[1] for point in self.data_points]
|
||||
memory_values = [point[2] for point in self.data_points]
|
||||
|
||||
# Calculate dynamic CPU scale limit
|
||||
max_cpu = max(cpu_values)
|
||||
cpu_scale_limit = self._calculate_cpu_scale_limit(max_cpu)
|
||||
|
||||
# Create figure with two subplots
|
||||
plt.style.use('dark_background')
|
||||
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6), dpi=100, sharex=True)
|
||||
fig.patch.set_facecolor('#2f3136')
|
||||
|
||||
# CPU subplot
|
||||
ax1.set_facecolor('#36393f')
|
||||
ax1.plot(timestamps, cpu_values, color='#7289da', linewidth=2.5, marker='o', markersize=4)
|
||||
ax1.fill_between(timestamps, cpu_values, alpha=0.3, color='#7289da')
|
||||
ax1.set_ylabel('CPU Usage (%)', color='#ffffff', fontsize=10)
|
||||
ax1.set_ylim(0, cpu_scale_limit)
|
||||
ax1.tick_params(colors='#ffffff', labelsize=8)
|
||||
ax1.grid(True, alpha=0.3, color='#ffffff')
|
||||
|
||||
# Add horizontal grid lines at 100% increments for CPU subplot
|
||||
for i in range(100, cpu_scale_limit + 1, 100):
|
||||
ax1.axhline(y=i, color='#ffffff', alpha=0.2, linestyle='--', linewidth=0.8)
|
||||
|
||||
# Title with vCPU info if applicable
|
||||
title = f'{self.server_name} - Resource Usage'
|
||||
if cpu_scale_limit > 100:
|
||||
estimated_vcpus = cpu_scale_limit // 100
|
||||
title += f' (~{estimated_vcpus} vCPU cores)'
|
||||
ax1.set_title(title, color='#ffffff', fontsize=12)
|
||||
|
||||
# Memory subplot
|
||||
ax2.set_facecolor('#36393f')
|
||||
ax2.plot(timestamps, memory_values, color='#43b581', linewidth=2.5, marker='o', markersize=4)
|
||||
ax2.fill_between(timestamps, memory_values, alpha=0.3, color='#43b581')
|
||||
ax2.set_ylabel('Memory (MB)', color='#ffffff', fontsize=10)
|
||||
ax2.set_ylim(0, max(memory_values) * 1.1)
|
||||
ax2.tick_params(colors='#ffffff', labelsize=8)
|
||||
ax2.grid(True, alpha=0.3, color='#ffffff')
|
||||
|
||||
# Format time axis (only on bottom subplot)
|
||||
ax2.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
||||
ax2.xaxis.set_major_locator(mdates.SecondLocator(interval=20))
|
||||
plt.setp(ax2.xaxis.get_majorticklabels(), rotation=45, ha='right', color='#ffffff', fontsize=8)
|
||||
|
||||
# Style both subplots
|
||||
for ax in [ax1, ax2]:
|
||||
ax.spines['bottom'].set_color('#ffffff')
|
||||
ax.spines['left'].set_color('#ffffff')
|
||||
ax.spines['top'].set_visible(False)
|
||||
ax.spines['right'].set_visible(False)
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
# Save to BytesIO
|
||||
img_buffer = io.BytesIO()
|
||||
plt.savefig(img_buffer, format='png', facecolor='#2f3136', edgecolor='none',
|
||||
bbox_inches='tight', dpi=100)
|
||||
img_buffer.seek(0)
|
||||
|
||||
plt.close(fig)
|
||||
|
||||
logger.debug(f"Generated combined graph for {self.server_name} (CPU scale: 0-{cpu_scale_limit}%)")
|
||||
return img_buffer
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate combined graph for {self.server_name}: {str(e)}")
|
||||
plt.close('all')
|
||||
return None
|
||||
|
||||
def get_data_summary(self) -> Dict[str, any]:
|
||||
"""
|
||||
Get summary statistics for the current data points.
|
||||
|
||||
Returns:
|
||||
Dictionary containing data point count, latest values, and trends
|
||||
"""
|
||||
if not self.data_points:
|
||||
return {
|
||||
'point_count': 0,
|
||||
'has_data': False,
|
||||
'latest_cpu': 0,
|
||||
'latest_memory': 0
|
||||
}
|
||||
|
||||
# Get latest values
|
||||
latest_point = self.data_points[-1]
|
||||
latest_cpu = latest_point[1]
|
||||
latest_memory = latest_point[2]
|
||||
|
||||
# Calculate CPU scale info
|
||||
max_cpu = max(point[1] for point in self.data_points)
|
||||
cpu_scale_limit = self._calculate_cpu_scale_limit(max_cpu)
|
||||
estimated_vcpus = cpu_scale_limit // 100
|
||||
|
||||
# Calculate trends if we have multiple points
|
||||
cpu_trend = 'stable'
|
||||
memory_trend = 'stable'
|
||||
|
||||
if len(self.data_points) >= 2:
|
||||
first_point = self.data_points[0]
|
||||
cpu_change = latest_cpu - first_point[1]
|
||||
memory_change = latest_memory - first_point[2]
|
||||
|
||||
# Determine trends (>5% change considered significant)
|
||||
if abs(cpu_change) > 5:
|
||||
cpu_trend = 'increasing' if cpu_change > 0 else 'decreasing'
|
||||
|
||||
if abs(memory_change) > 50: # 50MB change threshold
|
||||
memory_trend = 'increasing' if memory_change > 0 else 'decreasing'
|
||||
|
||||
return {
|
||||
'point_count': len(self.data_points),
|
||||
'has_data': self.has_sufficient_data,
|
||||
'latest_cpu': latest_cpu,
|
||||
'latest_memory': latest_memory,
|
||||
'cpu_trend': cpu_trend,
|
||||
'memory_trend': memory_trend,
|
||||
'cpu_scale_limit': cpu_scale_limit,
|
||||
'estimated_vcpus': estimated_vcpus,
|
||||
'time_span_minutes': len(self.data_points) * 10 / 60 # Convert to minutes
|
||||
}
|
||||
|
||||
|
||||
class ServerMetricsManager:
|
||||
"""
|
||||
Global manager for all server metrics graphs.
|
||||
|
||||
Handles:
|
||||
- Creation and cleanup of ServerMetricsGraphs instances
|
||||
- Bulk operations across all tracked servers
|
||||
- Memory management for graph storage
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the metrics manager."""
|
||||
self.server_graphs: Dict[str, ServerMetricsGraphs] = {}
|
||||
logger.info("Initialized ServerMetricsManager")
|
||||
|
||||
def get_or_create_server_graphs(self, server_id: str, server_name: str) -> ServerMetricsGraphs:
|
||||
"""
|
||||
Get existing ServerMetricsGraphs instance or create a new one.
|
||||
|
||||
Args:
|
||||
server_id: Pterodactyl server identifier
|
||||
server_name: Human-readable server name
|
||||
|
||||
Returns:
|
||||
ServerMetricsGraphs instance for the specified server
|
||||
"""
|
||||
if server_id not in self.server_graphs:
|
||||
self.server_graphs[server_id] = ServerMetricsGraphs(server_id, server_name)
|
||||
logger.debug(f"Created new metrics graphs for server {server_name}")
|
||||
|
||||
return self.server_graphs[server_id]
|
||||
|
||||
def add_server_data(self, server_id: str, server_name: str, cpu_percent: float, memory_mb: float):
|
||||
"""
|
||||
Add data point to a server's metrics tracking.
|
||||
|
||||
Args:
|
||||
server_id: Pterodactyl server identifier
|
||||
server_name: Human-readable server name
|
||||
cpu_percent: Current CPU usage percentage
|
||||
memory_mb: Current memory usage in megabytes
|
||||
"""
|
||||
graphs = self.get_or_create_server_graphs(server_id, server_name)
|
||||
graphs.add_data_point(cpu_percent, memory_mb)
|
||||
|
||||
def remove_server(self, server_id: str):
|
||||
"""
|
||||
Remove a server from metrics tracking.
|
||||
|
||||
Args:
|
||||
server_id: Pterodactyl server identifier to remove
|
||||
"""
|
||||
if server_id in self.server_graphs:
|
||||
del self.server_graphs[server_id]
|
||||
logger.debug(f"Removed metrics tracking for server {server_id}")
|
||||
|
||||
def get_server_graphs(self, server_id: str) -> Optional[ServerMetricsGraphs]:
|
||||
"""
|
||||
Get ServerMetricsGraphs instance for a specific server.
|
||||
|
||||
Args:
|
||||
server_id: Pterodactyl server identifier
|
||||
|
||||
Returns:
|
||||
ServerMetricsGraphs instance or None if not found
|
||||
"""
|
||||
return self.server_graphs.get(server_id)
|
||||
|
||||
def cleanup_old_servers(self, active_server_ids: list):
|
||||
"""
|
||||
Remove tracking for servers that no longer exist.
|
||||
|
||||
Args:
|
||||
active_server_ids: List of currently active server IDs
|
||||
"""
|
||||
servers_to_remove = []
|
||||
for server_id in self.server_graphs:
|
||||
if server_id not in active_server_ids:
|
||||
servers_to_remove.append(server_id)
|
||||
|
||||
for server_id in servers_to_remove:
|
||||
self.remove_server(server_id)
|
||||
|
||||
if servers_to_remove:
|
||||
logger.info(f"Cleaned up metrics for {len(servers_to_remove)} inactive servers")
|
||||
|
||||
def get_summary(self) -> Dict[str, any]:
|
||||
"""
|
||||
Get summary of all tracked servers.
|
||||
|
||||
Returns:
|
||||
Dictionary with tracking statistics
|
||||
"""
|
||||
return {
|
||||
'total_servers': len(self.server_graphs),
|
||||
'servers_with_data': sum(1 for graphs in self.server_graphs.values() if graphs.has_sufficient_data),
|
||||
'total_data_points': sum(len(graphs.data_points) for graphs in self.server_graphs.values())
|
||||
}
|
||||
Reference in New Issue
Block a user